Überblick
Die Freiheit, die Data-Science-Teams von einem nativen Cloud-Service benötigen, von dem die IT profitiert.
CDP Machine Learning ermöglicht es Data-Science-Teams in Unternehmen, über den gesamten Datenlebenszyklus hinweg zusammenzuarbeiten und dabei sofortigen Zugriff auf Unternehmens-Datenpipelines und skalierbare Rechenressourcen sowie Zugang zu bevorzugten Tools zu erhalten. Optimieren Sie den Prozess der Übernahme analytischer Workloads in den Produktivbetrieb und verwalten Sie Anwendungsfälle für maschinelles Lernen im gesamten Unternehmen auf intelligente Weise und in großem Maßstab.
CDP Machine Learning optimiert auf der CDP ML-Workflows in Ihrem Unternehmen mit nativen und robusten Tools für die Bereitstellung, Bedienung und Überwachung von Modellen. Mit der erweiterten SDX für Modelle können Sie die Modellkatalogisierung steuern und automatisieren und anschließend die Ergebnisse nahtlos verschieben, um über verschiedene CDP-Erfahrungen, einschließlich Data Warehouse und Operational Database hinweg zusammenzuarbeiten.
Für Data Scientists
Optimieren Sie den Datenlebenszyklus für maschinelles Lernen und nutzen Sie Modelle für maschinelles Lernen im gesamten Unternehmen effektiv. Dies gelingt Ihnen mit transparenten und wiederholbaren Workflows, die für alle Beteiligten funktionieren.
Erleben Sie die Tools selbst
Anwendungsfälle
KI VOM KONZEPT IN DIE REALITÄT UMSETZEN
MASCHINELLES LERNEN MIT MLOPS SKALIEREN
EXPLORATIVE DATA SCIENCE ERMÖGLICHEN
KI vom Konzept in die Realität umsetzen
Reduzieren Sie Ihre Amortisierungszeit und bringen Sie KI-Anwendungen auf den Weg.
In welcher Branche Sie auch tätig sein mögen, neue geschäftliche Herausforderungen kommen schneller denn je auf Sie zu. Immer häufiger ist man auf KI- und ML-Tools angewiesen, um Schritt halten zu können. Möglicherweise sehen Sie sich gezwungen, eine Strategie zu entwickeln, mit der KI-Anwendungen in die Praxis umgesetzt werden. CML mit der CDP ist die einheitliche Datenplattform, die Ihnen hilft, KI vom Labor in die Fabrik zu bringen.

Maschinelles Lernen mit MLOPs skalieren
Profitieren Sie mit MLOPs von mehr Transparenz, verbesserter Zusammenarbeit und höherem ROI.
Mit MLOPs können Sie von frühen Erfolgen profitieren und skalieren, indem Sie Schritte befolgen, um vorhandene Modelle auf dem neuesten Stand zu halten und Kontrollen einrichten, um die Datensicherheit und Governance während des gesamten ML-Produktionslebenszyklus aufrechtzuerhalten.

Explorative Data Science ermöglichen
Komprimieren Sie den Zeitraum zwischen Datenexploration und geschäftlichen Maßnahmen.
Cloudera bietet eine umfassende Plattform, die Data-Science-Teams „zertifizierte Datensätze“ sowie konsistente und robuste Tools an die Hand gibt, um Datenexplorationen, Ad-hoc-Datenwissenschaft und Erkenntnisgenerierung so schnell wie möglich zu gestalten.

Stellen Sie mit wenigen Klicks Arbeitsbereiche für maschinelles Lernen bereit, sodass Data-Science-Teams ohne Wartezeit auf die Projektumgebungen und automatisch flexible Rechenressourcen zugreifen können, die sie für End-to-End-ML benötigen.
CDP Machine Learning gewährt Administratoren und Data-Science-Teams vollständige Transparenz von der Datenquelle bis zur Produktionsumgebung – dies ermöglicht nachvollziehbare Arbeitsabläufe und eine einfache und sichere teamübergreifende Zusammenarbeit.
Datenwissenschaftler sollten zum Erkennen, Abfragen und Visualisieren von Datensätzen nicht zwischen verschiedenen Tools wechseln müssen. CML vereint all diese Funktionen in der Anwendung Data Discovery and Visualization, einer einzigen Benutzeroberfläche zur Erfüllung Ihrer Anforderungen im Bereich explorative Data Science.
AMPs sind ML-Projekte, die mit einem Klick direkt aus Cloudera Machine Learning bereitgestellt werden können. AMPs ermöglichen es Datenwissenschaftlern, in einem Bruchteil der sonst üblichen Zeit von der Idee zu einem voll funktionsfähigen ML-Anwendungsfall zu gelangen. Sie bieten ein End‑to‑End-Framework für die sofortige Erstellung, Bereitstellung und Überwachung von geschäftsfähigen ML-Anwendungen.
Die MLOps-Funktionen von Cloudera Machine Learning (CML) ermöglichen die Bereitstellung von Modellen mit nur einem Klick, die Katalogisierung von Modellen und die Überwachung granularer Prognosen, damit Modelle in allen Produktionsumgebungen sicher und präzise bleiben.
Liefern Sie Erkenntnisse mit einer konsistenten und benutzerfreundlichen Erfahrung, die intuitive und leicht zugängliche Drag-and-Drop-Dashboards bietet und das Erstellen benutzerdefinierter Anwendungen ermöglicht.
Bereitstellungsoptionen
Setzen Sie CDP Machine Learning überall mit einer portablen, konsistenten und nativen Cloud-Experience ein.
CDP Public Cloud
- Multi-Cloud-fähig: Machen Sie sich nicht von einem einzigen Cloud-Anbieter abhängig. Bringen Sie Ihre KI-Initiativen ganzheitlich voran – mit Daten von überall.
- Skalierbar: Nutzen Sie skalierbare Rechenressourcen, die automatisch ausgesetzt werden, und für die nur bei Nutzung Kosten anfallen.
- Integration des gesamten Lebenszyklus: Teilen Sie Workloads und Ergebnisse nahtlos und sicher über alle CDP-Experiences hinweg, einschließlich Cloudera Data Engineering und Data Warehouse.
CDP Private Cloud
- Kosteneffektiv: Die optimierte Ressourcenauslastung von disaggregiertem Speicher ermöglicht Kosteneinsparungen im gesamten Cluster.
- Optimierte Leistung: Erfüllen Sie Ihre SLA jederzeit mit Workload-Isolation und Multi-Tenant-Optionen für kritische Workloads.
- Effektiv zusammenarbeiten: Teilen Sie Workloads, Daten und Ergebnisse sicher zwischen Teams in jeder Phase des Datenlebenszyklus.
Weitere Informationen zum Formfaktor der Private Cloud Base von CDP Machine Learning finden Sie unter Cloudera Data Science Workbench.
Starten Sie jetzt
Wöchentliche CDP-Demo
Nehmen Sie an der wöchentlichen Demo mit Live-Fragerunde der technischen Experten von Cloudera teil. Erfahren Sie, wie Sie den Lebenszyklus Ihrer Daten erschließen können, um KI-Anwendungsfälle voranzubringen.
Die CDP per Videotour entdecken
Werfen Sie bei einer Videotour zur CDP einen Blick hinter die Kulissen und entdecken Sie, wie sichere und optimierte ML-Workflows mehr Vorteile für Ihr Unternehmen bringen.
Technische Ressourcen der CDP
Sparen Sie Zeit bei technischen Informationen und Ressourcen, um Ihre Kenntnisse leichter zu erweitern und sich Wissen über Cloudera Machine Learning anzueignen.
Kostenlose Schulung
Nutzen Sie On-Demand-Schulungen, um in Bezug auf CML auf der CDP Fahrt aufzunehmen und ein optimiertes Selfservice-ML im gesamten Unternehmen zu ermöglichen.
Preise
Bewerten Sie Preise, Abrechnungsbedingungen, Lizenzierungsdetails und Stundensätze und schätzen Sie Kosten mit praktischen Rechnern.
Produktdokumentation
Legen Sie den richtigen Grundstein für Best Practices in puncto Ressourcenplanung, Produktkonfiguration und für alles, was Sie für ML brauchen.
Das sagen Kunden über Cloudera Machine Learning


"Integriert sich nahtlos in die anderen CDP-Erfahrungen und ermöglicht eine schnelle Umsetzung von Erkenntnissen aus Ihren Daten. Ich schätze besonders die Flexibilität und Offenheit.”
Analytics Solution Architect
Energie- und Versorgungswirtschaft

"One-Stop-Shop für Ihren Bedarf an Datenwissenschaft. Die Verwaltung mehrerer Sitzungen, die Automatisierung von Datenpipeline-Aufträgen und sogar die Erstellung von Anwendungen für maschinelles Lernen sind einfach und intuitiv."
Experte für Modellentwicklung
Dienstleistungsindustrie

"Hervorragende Plattform für alle Arten von ML- und Data-Engineering-Projekten. Bietet einen einfachen Weg zur Entwicklung und zum Testen von Code sowie zur Verfolgung der ML-Leistung".
Big data Und Analytischer Architekt
Sonstige Industrie